
Interfacing Serial JPEG Camera Module with

Computer using Zigbee pair

A Guide to interface Serial JPEG Camera with Matlab

By

Kaushik Basak Chowdhury

Project Staff, IIT Bombay

Email id- soumyakbc@gmail.com

Contents

I. Introduction

II. Camera Module Description

III. Interfacing Camera Module with Computer

IV. Testing the Camera Module using X-CTU software

V. Image Acquisition using Matlab Software

Appendix – Command Set

I. Introduction

This document provides a step-by-step approach towards understanding of the

camera module hardware, testing the module interface using X-CTU (software from Digi) and

finally implementation of Image Acquisition using Matlab.

II. Camera Module Description

The Camera module hardware is briefly described in the Figure 2.1

Figure 2.1 Description of Camera Hardware

The functional block diagram of the Camera module is shown in following

Figure 2.2.

Figure 2.2: Functional Block Diagram of the Serial Camera Module

The camera module consists of a CMOS image sensor which is controlled by mtekvision

Camera Control Processor (CCP). The captured image is compressed in JPEG format by the

onboard STC microcontroller which uses OV528 protocol, developed by OmniVision. The

compressed JPEG image is then divided into packets and transmitted out through UART. The

size of the packets can vary from 64 to 512 bytes. In this particular camera module the UART

output from the STC microcontroller is converted to RS-232 logic levels by the Sipex RS-232

Line Driver/Receiver. Finally the RS-232 interface is available from the camera module board to

connect to a host. This camera module supports Baud Rates from 7200 bps to 115200 bps.

Note 1: In order to communicate with this serial camera module the Baud Rate of the host

should match with that of the camera module and the host should have RS-232 interface. The

camera module cannot detect and configure the Baud Rate automatically. One has to manually

set the Baud Rate by issuing specific commands.

Note 2: The default command set for OmniVision OV528 Protocol is not directly used in this

camera. The manufacturer has used a generic command set by changing the firmware and the

host driver. The command set used in this camera module is provided in the Appendix of this

document.

III. Interfacing Camera Module with Computer

i. Directly using wired connection

The camera module can easily be connected to a computer having RS-232 Serial

Port. Since computers today rarely have a Serial Port and on the other hand have multiple

USB ports, the need for a RS-232 to USB converter arises. The setup is shown in the

Figure 3.1

Figure 3.1: Connecting serial camera module with computer using Serial-to-USB converter

Note: The RS-232 to USB converter board (or will appear as a “COM” Port in the Device

Manager in Windows OS. The same COM Port is to be referred to while communicating with the

camera through Matlab or X-CTU software.

ii. Wireless connection using Zigbee Pair

The camera module can be wirelessly connected to the computer using a Zigbee

module pair in between as shown in the Figure 3.2.

Figure 3.2: Connecting serial camera module with computer using Zigbee Module Pair

Note: One should make sure that the same Baud Rate is assigned to - the camera module, the

Xbee pair, the X-CTU(or Matlab) software. Since, the default Baud Rate for Camera module is

9600 bps; it is convenient to set the Baud Rates of all other interfacing devices to 9600 bps as

well.

IV. Testing the Camera Module using X-CTU software

The camera module can be tested using the X-CTU software from Digi. The

entire method is described using diagrams. In our example the Serial Port is COM1 and Baud

Rate is 57600 bps. After opening the X-CTU terminal the following window will show up on the

screen:

From the X-CTU window make the following settings:

PC Settings > Com Port Setup > Select Com Port > Select USB Serial Port (COM1)

PC Settings > Com Port Setup > Baud > Select 57600

PC Settings > Com Port Setup > Flow Control > Select NONE

PC Settings > Com Port Setup > Data Bits > Select 8

PC Settings > Com Port Setup > Parity > Select NONE

PC Settings > Com Port Setup > Stop Bits > Select 1

Next, go to the tab ‘Terminal’ and the Click on ‘Show Hex’ and the following will appear:

Now click on the ‘Assemble Packet’ and the following window will show up.

Here one can type the bytes which need to be transmitted out from the terminal. In our example

we are sending the SYNC command which consists of the following six bytes –

AA 0D 00 00 00 00

As soon as you hit the ‘Send Data’ Button, the X-CTU terminal will send out those 6 bytes and

the sent bytes appears in blue color in Terminal Hex screen. On receipt of those 6 bytes or

SYNC command the camera sends back an ACK of the following 6 bytes-

AA 0E 0D 00 00 00

The bytes received from the camera module are displayed in red in the X-CTU terminal Hex

screen as shown in the following diagram-

V. Image Acquisition using Matlab Software

In general, Image Acquisition Toolbox of Matlab automatically recognizes an

imaging device (for example Web-cam, digital cameras etc.) connected to the computer and

hence the image acquisition toolbox functions work directly. This is because these cameras have

got a device firmware embedded in the controller of the device which has a capability to connect

as a USB device and act as an imaging device. The serial camera module in our case does not

have any such program which automatically communicates with the host device (computer in

this case). Thus, this cannot be termed as an ‘imaging device’ from the perspective of interfacing

with Matlab. The serial camera module has to be supplied with appropriate set of commands for

communication. This has to be done by creating a ‘Serial Object’ in Matlab through which we

can communicate with the serial camera module.

As shown in Section III, the serial camera module can be connected to the

Computer in two different ways, both of which offers a provision to access the camera module

through a ‘Virtual Com Port’ designated by a specific COM port number. This COM port

number has to be used to create the ‘Serial Object’ in Matlab program.

Now, the entire Matlab code written for image acquisition will be elaborated in

detail. The command set is provided in the Appendix.

1. Creating a Serial Object- ‘cam’ is the name of the serial object created in Matlab which

is connected to the COM port 1.

cam=serial('COM1');

2. Setting the Baud Rate- the Baud Rate of the serial object ‘cam’ is set at 57600 bps. It is

assumed that the camera baud rate is also 57600 bps.

cam.BaudRate=57600;

3. Setting Byte Order of ‘cam’ object to Big Endian

set(cam,'ByteOrder','bigEndian');

4. Setting Input Buffer Size of ‘cam’ object to 512 bytes, since data packets received from

the serial camera is of size 512 bytes.

cam.InputBufferSize=512;

5. Setting Timeout of ‘cam’ object to 0.25 seconds, an optimum value for smooth operation

cam.Timeout=0.25;

6. Opening ‘cam’ object

fopen(cam);

7. Synchronization with the serial camera by sending SYNC commands and receiving ACK

commands

for i=1:50
 fwrite(cam,hex2dec({'AA','0D','00','00','00','00'}));
 if cam.BytesAvailable>=1
 %ack=fread(cam);
 break;
 end
 pause(0.2);
end

8. Creating and opening JPEG file for storing the acquired image

jpg_id=fopen('jpeg_snapshot.jpg','w+');

9. Initialization of the camera module

fwrite(cam,hex2dec({'AA','01','00','07','00','07'}));

10. Setting package size to512 bytes

fwrite(cam,hex2dec({'AA','06','08','00','02','00'}));

11. Setting the type of picture which is to be acquired from the camera module to

Compressed Snapshot

fwrite(cam,hex2dec({'AA','05','00','00','00','00'}));

pause(0.05);
ack=fread(cam,cam.BytesAvailable)

12. Sending trigger to get picture

fwrite(cam,hex2dec({'AA','04','01','00','00','00'}));

13. Reading the size of image data from the bytes received from the cam

data_size=fread(cam);
data_size_dec=dec2hex(data_size);

14. Calculating the number of 512 byte size packets

h_byte=data_size_dec(11,:);
l_byte=data_size_dec(10,:);
data_bytes_hex=strcat(h_byte,l_byte);

data_bytes_dec=hex2dec(data_bytes_hexi=data_bytes_dec;

p=floor(i/506);

15. Calculating the total number of packets

t=p+1;

16. Calculating the number of compressed image data bytes in the last packet

last_data_bytes=i-(p*506);

17. Creating a zero matrix of rows equal to the number of packets received and 512 columns.

This matrix is used to store the raw data packets received from the camera module

Img_data_packet=zeros(p,512);

18. Reading the packets from the camera module

for j=1:t

 id=dec2hex(j-1);
 l=length(id);
 h_id='00'; l_id='00';

 switch l

 case 1
 h_id='00';
 l_id(1)='0';
 l_id(2)=id;

 case 2
 h_id='00';
 l_id=id;

 case 3
 h_id(1)='0';
 h_id(2)=id(1);
 l_id(1)=id(2);
 l_id(2)=id(3);

 case 4
 h_id(1)=id(1);
 h_id(2)=id(2);
 l_id(1)=id(3);
 l_id(2)=id(4);
 end

 %Send ACK with dataID and get data packets
 ack_dataID=hex2dec({'AA','0E','00',h_id,l_id,'00'});
 fwrite(cam,ack_dataID);
 Temp_data=fread(cam);
 Img_data_packet(j,1:length(Temp_data))=Temp_data;
end

19. The packet matrix which has already been created contains of the following-

1
st
 and 2

nd
 column- Packet ID no.

3
rd

 and 4
th

 column- Number of compressed image data in that particular packet (row)

5
th

 to third from last column- Compressed image data bytes

Last two columns (511st and 512nd in for 512-byte packets) - Verify bits

 Now the Compressed image data bytes are to be extracted from the packet matrix.

hi_byte=dec2hex(Img_data_packet(t,4));
lo_byte=dec2hex(Img_data_packet(t,3));
last_pck_data_hex=strcat(hi_byte,lo_byte);
last_pck_data_bytes=hex2dec(last_pck_data_hex);

d=4+last_pck_data_bytes;
Crmpsd_Image_data=Img_data_packet(1:t,5:510);
Crmpsd_Image_data(t,1:(d-4))=Img_data_packet(t,5:d);

20. Writing the JPEG compressed image data matrix into the previously created JPEG file.

for i=1:t
 data=Crmpsd_Image_data(i,:);
 fwrite(jpg_id,data);
end

21. Closing the jpeg file

fclose(jpg_id);

22. Displaying captured image using Matlab

f=figure;
set(f,'renderer','openGL');
imshow('jpeg_snapshot.jpg');

23. Closing, deleting and clearing the Serial object ‘cam’

fclose(cam);
delete(cam);
clear cam;

Appendix – Command Set

